Complexity of Discrete Energy Minimization Problems

Alexander Shekhovtsov² Mengtian Li¹

Daniel Huber¹

Carnegie Mellon University¹ Graz University of Technology²

Graz University of Technology

Abstract

- Energy minimization is NP-hard 😂
- Is it approximable? Not yet resolved
- Sometimes yes: Potts, Metric, Logic MRF ©
- We prove that QPBO, planar energy with 3+ labels, and general energy minimization are all inapproximable
- Useful for algorithm design finding "good" subclasses
- In practice, useful for model selection

Energy Minimization Formulation

- ullet Graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ with label space \mathcal{L}
- Pairwise energy

$$\min_{x \in \mathcal{L}^{\mathcal{V}}} \sum_{u \in \mathcal{V}} f_u(x_u) + \sum_{(u,v) \in \mathcal{E}} f_{uv}(x_u, x_v)$$

• Quadratic Pseudo-Boolean Optimization (QPBO)

$$\min_{x \in \{0,1\}^{\mathcal{V}}} \sum_{u \in \mathcal{V}} a_u x_u + \sum_{(u,v) \in \mathcal{E}} a_{uv} x_u x_v$$

General energy minimization

$$\min_{x \in \mathcal{L}^{\mathcal{V}}} \sum_{S \subseteq \mathcal{V}} f_S(x_S)$$

Optimization & Approximation

Optimization problems

- Approximation ratio $f(x)/f(x^*), \quad f(x^*) > 0$
- **APX** constant ratio approximation
- F-APX approximation ratio is a function of class *F* of the input bit length
- Relations of complexity classes

 $PO \subseteq APX \subseteq log-APX \subseteq poly-APX \subseteq exp-APX \subseteq NPO$

Complexity Axis & Main Results

- Energy minimization problems vary greatly in approximation ratio
- Where do QPBO and general energy minimization fall on this axis?

Theorem:

QPBO (binary labels) is **complete** in exp-APX.

Theorem:

General energy minimization is **complete** in exp-APX.

Theorem:

Planar energy with 3+ labels is **complete** in exp-APX.

- Bounded approximation ratio ©
 - Indicates a class of practical interest
 - Useful for algorithm design
- Do not try to prove approximation guarantee if
 - Model includes QPBO, planar 3-label, or general energy minimization
 - Or you can build AP-reduction from them

Details

Non-deterministic Polynomial time Optimization (NPO)

- The set of instances is recognizable in polynomial time
- The solution's feasibility is verifiable in polynomial time
- A positive objective value

Polynomial time Optimization (PO)

• The problem is in NPO, and it is solvable in polynomial time

Approximation-**P**reserving reduction (**AP-reduction**)

• Reduce NPO problem P_1 to another NPO problem P_2

• For a given positive constant α , the mappings must satisfy,

$$\frac{f_2(y_2)}{f_2(y_2^*)} \le r$$
 implies $\frac{f_1(\sigma(y_2))}{f_1(y_1^*)} \le 1 + \alpha(r-1)$

C-hard & C-complete

- A problem is *C*-hard if any problem in complexity class C can be reduced to it
- A *C*-hard problem is *C*-complete if it belongs to *C*
- Intuitively, a complexity class *C* specifies the **upper bound** on the hardness of the problems within, *C*hard specifies the lower bound, and C-complete exactly specifies the hardness

Problem W3SAT-triv

INSTANCE: Boolean CNF formula F with variables $x_1, ...,$ x_n and each clause assuming exactly 3 variables; nonnegative integer weights $w_1, ..., w_n$

SOLUTION: Truth assignment τ to the variables that either satisfies F or assigns the trivial, all-true assignment MEASURE: $\min \sum_{i=1}^{n} w_i \tau(x_i)$

References

- [1] G. Ausiello et al., Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer (1999)
- [2] P. Orponen et al., On approximation preserving reductions: complete problems and robust measures. Technical Report (1987)
- [3] H. Ishikawa, Transformation of general binary MRF minimization to the first-order case. PAMI 33(6), 1234-1249 (2011)

