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. Relations of complexity classes

PO C APX C log-APX C poly-APX C exp-APX C NPO

Complexity Axis & Main Results

Details

Complexity Class In’lt_eaart;ecl’[i?)?\a%er;e, Theorem:
2 W Graph structure: QPBO (binary labels) is complete in exp-APX.
4 Binary or Multi-label
Theorem:
NPhare > abel Flanar General energy minimization is complete in
Multi-label Potts exp-APX.
! Logic MRF Theorem:
. Comvex Imteraction £ 1ANAT energy with 3+ labels is complete in
exp-APX.
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General energy with 3+ labels

AP-reduction
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Planar energy with 3+ labels

Non-deterministic Polynomial time Optimization (NPO)
e The set of instances is recognizable in polynomial time
e The solution’s feasibility is verifiable in polynomial time

e A positive objective value

Polynomial time Optimization (PO)

e The problem is in NPO, and it is solvable in polynomial
time

Approximation-Preserving reduction (AP-reduction)
e Reduce NPO problem P, to another NPO problem P,

T

[ x1 : instance of P; ] — [ X, : instance of P, ]

1 solve P,
o

[ i solu;ion of P, ] G— [ y, : solution of P, ]

e For a given positive constant o, the mappings must satis-
fy,

f,(y,) <r implies fi(a(y,))
fz(yz ) f1(y1 )

<l+a(r-1)

C-hard & C-complete

e A problem is @-hard if any problem in complex-

ity class C can be reduced to it
e A C-hard problem is @¢-complete if it belongs to C

o Intuitively, a complexity class € specifies the upper
bound on the hardness of the problems within, C-
hard specifies the lower bound, and ¢-complete ex-
actly specifies the hardness

Problem W3SAT-triv

INSTANCE: Boolean CNF formula F with variables xi, ...,
x, and each clause assuming exactly 3 variables; non-
negative integer weights wy, ..., w,

SOLUTION: Truth assignment r to the variables that either

satisfies F' or assigns the trivial, all-true assignment
MEASURE: min Z; wT(X,)
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